AROTAL - A DC-8 Lidar

Airborne Raman Ozone Temperature and Aerosol Lidar

Goddard Participants

- Walt Hoegy, Don Silbert, Bill Heaps, John Burris
 - NASA GSFC
- Grant Sumnicht SSAI
- Laurence Twigg SSAI

Langley Participants

- Chris Hostetler, John Hair
 - NASA LARC
- Gary Hansen, Patricia Lucker
 - Science and Technology Corp.
- Mary Osborne SAIC

Data Products

- Ozone From 1 km above plane to ~ 30 km;
 1-3 minute integration; 40 km with more integration
- Temperature 1 km above plane to ~ 60 km; 1 minute integration (SZA >95°)
- Aerosol Backscatter, Extinction at 355/387 (SZA > 95°) nm; Near plane to ~30 km; 1 minute integration (SZA > 95°)

Instrumentation

- Four Transmitted Wavelengths: 308, 355,
 532 and 1064 nm
- Six Detected Wavelengths: 308, 332, 355, 382, 532 and 1064 nm
- Multiple Detectors per Wavelength
- Photon Counting and Analog Detection

Instrumentation (Cont.)

- 16" (40.6 cm) Primary Telescope
- Six 1" mini receivers for near field detection
- Gated Hamamatsu R7400 PMTs
- 50Hz 1.2J Nd-YAG; 200 Hz, .22J XeCl

AROTEL Mini Receivers

AROTEL on DC-8

Arotel - Ny Aalesund Comp

AROTAL Ozone - 2/28/2000

AROTEL Rayleigh Temp 3/5

AROTEL Raman Temp 3/5

SOLVE 2 Improvements

- Mechanical Chopper
 - Blocks return from outgoing beams for 2 km
- Improved PMT Gating Circuitry
 - Better linearity
- More Dynamic Range near plane
 - Better linearity
- Substantial Algorithm Development

Benefits to SAGE III

- Vertical profiles of three SAGE III parameters
- Can average along the satellite footprint to provide high SNR profiles
- Standard profiles provide variability within the satellite footprint